

CALYS 100

Field precision documenting multifunction calibrator

CALYS 100 is a precision documenting multifunction calibrator within CALYS range. It is the perfect tool for advanced process maintenance and use on test bench in all industries. Suitable for all field and lab measurements, it can simultaneously measure and generate over two isolated channels various signals of temperature, resistance, process, pressure and frequency in one single instrument.

Description

CALYS 100 is a field precision documenting multifunction calibrator within CALYS range. It is the perfect tool for advanced process maintenance and use on test bench in all industries. Suitable for all field and lab measurements, it can simultaneously measure and generate over two isolated channels various signals of temperature, resistance, process, pressure and frequency in one single instrument.

Providing **extended functionalities** (temperature simulation, scaling, steps, synthesizer, statistical functions...), CALYS 100 makes advanced data exploitation and full data traceability easier, as well as quick access to functions by menus.

The instrument simultaneously measures and simulates:

- Temperature: Up to 0,012% RDG
- Resistance: Up to 0,010% RDG, 4 K Ω range
- Current: Up to 0,012% RDG, 50 mA range + 24 V loop supply
- Voltage: Up to 0,010% RDG, 50 V range
- Frequency: Up to 0,005% RDG, 20 KHz range (10 KHz in simulation)
- Pressure: When used with an external pressure module (ref. ACL433), CALYS 100 can measure and simulate pressure (comparison calibration with a pressure pump).

Using this user-friendly instrument, calibration tasks can be quickly carried out over the whole process chain. Take the 900 g documenting process calibrator to the field with you during the whole week with **10 calibration procedures stored** in the device. Run the procedure after connecting the probes to the instrument (Easy connect system®) and save the results for onsite easy and guick calibration.

Back to the office, you can then upload the data on a computer in order to **issue customized calibration certificates** with dedicated calibration software DATACAL.

IP 54, fully protected by an antichoc rubber holster, CALYS 100 integrates "easyconnect" terminals and a wide backlite display that makes it easy to use in any severe or dark conditions.

Easy connection system®

Connect your probes by simply pushing on the terminal top and insert wires of up to 3 mm or 10 AWG diameter and compensated thermocouple connectors.

Wires are held tight between two brass plates ensuring thermal stability and a very good cold junction compensation for thermocouples. This system also enables 4 mm banana plugs and security connectors to be connected on the terminal top.

CALYS series, 4 models from basic use to advanced performances

Specifications		CALYS 50	CALYS 75	CALYS 100	CALYS 150
Top accuracy		200 ppm		130 ppm	50 ppm
Temperature accuracy	Thermocouples (14) RTDs (12)	RDG		0.01% RDG for Tc K 0.01% RDG	0.005% RDG for Tc K 0.006% RDG
DC current + Loop supply 24 V	Range Accuracy	50 mA 0.0175% RDG			100 mA 0.007% RDG
DC voltage	Range Accuracy	50 V IN / 20 V OUT 0.013% RDG	50 V 0.013% RDG	50 V 0.010% RDG	50 V 0.005% RDG
Frequency	Range Accuracy	20 KHz IN / 10 KHz OUT 0.005% RDG			100 KHz 0.01% RDG
Resistance	Range	4000 Ω 0.012% I	RDG	4000 Ω 0.010%	50 ΚΩ 0.006%

	Accuracy			RDG	RDG
Pressure	Range Accuracy		Relative pressur 1,000 bar 0.05%	e: 30 bar / Absolu RDG	te pressure:
Compliance to s	tandards				21 CFR Part 11
					NADCAP Heat treatment AMS 2750
Additional functi	ons	simulation of rar	nced data exploitation: Scaling, relative measurement, ation of ramps and steps, synthetizer, square root, statistical ions Transmitter function		
Additional functi	ons		Switch test Calibration of transmitters		
Additional functi	ca HA ca da Ca		Comparison calibration HART: Digital calibration and data transfer Calibration of thermistors		
Software			DATACAL calibration software for configuration and data management		configuration
Memory			10,000 data stored and recalled on screen as curve or list		

Specifications

Specifications and performances in temperature @23°C ±5°C Uncertainty is given in % of reading (CALYS 100 display) + fixed value.

Sensor	Input / Output range	Resolution	Accuracy / 1 year in measurement	Accuracy / 1 year in simulation
Pt50 ($\alpha = 3851$)	-220°C to +1200°C	0.01°C	0.010% RDG + 0.06°C	0.012% RDG + 0.18°C
Pt100 (α = 3851)	-220°C to +1200°C	0.01°C	0.010% RDG + 0.05°C	0.012% RDG + 0.12°C
Pt100 (α = 3916)	-200°C to +510°C	0.01°C	0.010% RDG + 0.05°C	0.012% RDG + 0.12°C
Pt100 (α = 3926)	-210°C to +850°C	0.01°C	0.010% RDG + 0.05°C	0.012% RDG + 0.12°C
Pt200 (α = 3851)	-220°C to +1200°C	0.01°C	0.010% RDG + 0.12°C	0.012% RDG + 0.33°C
Pt500 ($\alpha = 3851$)	-220°C to +1200°C	0.01°C	0.010% RDG + 0.07°C	0.012% RDG + 0.18°C
Pt1000 ($\alpha = 3851$)	-220°C to +850°C	0.01°C	0.010% RDG + 0.05°C	0.012% RDG + 0.08°C
Ni100 (α = 618)	-60°C to +180°C	0.01°C	0.010% RDG + 0.03°C	0.012% RDG + 0.08°C
Ni120 (α = 672)	-40°C to +205°C	0.01°C	0.010% RDG + 0.03°C	0.012% RDG + 0.08°C
Ni1000 (α = 618)	-60°C to +180°C	0.01°C	0.010% RDG + 0.03°C	0.012% RDG + 0.08°C
Cu10 ($\alpha = 427$)	-70°C to +150°C	0.01°C	0.010% RDG + 0.18°C	0.012% RDG + 0.1°C
Cu50 (α = 428)	-50°C to +150°C	0.01°C	0.010% RDG + 0.06°C	0.012% RDG + 0.15°C

Resistive probes: Measurement and simulation

Resistive probes measurements in 2, 3 or 4 wires: automatic recognition of number of connected wires, with indication on screen

Accuracies are given for 4-wire mounted probes

Take into account particular error of temperature sensor used and implementation conditions Temperature coefficient: < 10% of accuracy /°C

Measuring current: 0.25 mA (Measurement) or from 0.1 to 1 mA (Emission) Current settling time: $< 5 \mbox{ ms}$

Thermocouples: Measurement and simulation

Туре	Input range	Resolution	Accuracy / 1 year in m easuremen t	Output range	Resolution	Accuracy / 1 year in simulation
К	-250 to -200°C -200 to -120°C -120 to 0°C 0 to +1372°C	0.2°C 0.1°C 0.05°C 0.05°C	0.70°C 0.20°C 0.1°C 0.010% RDG + 0.08°C	-240 to -50°C -50 to 0°C +0 to +1372°C	0.2°C 0.1°C 0.05°C	0.50°C 0.09°C 0.013% L + 0.07°C
Т	-250 to -200°C -200 to -120°C -120 to -50°C -500 to +400°C	0.2°C 0.05°C 0.05°C 0.05°C	0.60°C 0.20°C 0.10°C 0.010% RDG + 0.08°C	-240 to -100°C -100 to +0°C +0 to +400°C	0.2°C 0.05°C 0.05°C	0.35°C 0.09°C 0.010% L + 0.08°C
J	-210 to -120°C -120 to 0°C +0 to +1200°C	0.05°C 0.05°C 0.05°C	0.2°C 0.09°C 0.010% RDG + 0.07°C	-210 to -0°C +0 to +1200°C	0.05°C 0.05°C	0.18°C 0.010% L + 0.07°C
E	-250 to -200°C -200 to -100°C -100 to +0°C +0 to 1000°C	0.1°C 0.05°C 0.05°C 0.05°C	0.4°C 0.13°C 0.07°C 0.010% RDG + 0.05°C	-240 to -100°C -100 to +40°C +40 to +1000°C	0.1°C 0.1°C 0.05°C	0.2°C 0.09°C 0.010% L + 0.05°C
R	-50 to +150°C +150 to +550°C +550 to 1768°C	0.5°C 0.20°C 0.10°C	0.7°C 0.010% RDG + 0.3°C 0.010% RDG + 0.2°C	-50 to +350°C +350 to +900°C +900 to 1768°C	0.5°C 0.2°C 0.1°C	0.45°C 0.010% L + 0.35°C 0.010% L + 0.2°C
S	-50 to +150°C +150 to +550°C +550 to +1768°C	0.50°C 0.20°C 0.1°C	0.7°C 0.010% RDG + 0.35°C 0.010% RDG + 0.25°C	-50 to +120°C +120 to +450°C +450 to +1768°C	0.5°C 0.2°C 0.1°C	0.7°C 0.010% L + 0.35°C 0.010% L + 0.25°C
В	+400 to +900°C +900 to +1820°C	0.2°C 0.1°C	0.010% RDG + 0.4°C 0.010% RDG + 0.2°C	+400 to +850°C +850 to +1820°C	0.2°C 0.1°C	0.010% L + 0.4°C 0.010% L + 0.2°C
U	-200 to +660°C	0.051°C	0.15°C	-200 to +660°C	0.05°C	0.13°C

L	-200 to +900°C	0.05°C	0.2°C	-200 to +900°C	0.05°C	0.17°C
С	-20 to +900°C +900 to 2310°C	0.1°C 0.1°C	0.2°C 0.010% RDG + 0.15°C	-20 to +900°C +900 to 2310°C	0.1°C 0.1°C	0.23°C 0.010% L + 0.15°C
Ν	-240 to -190°C -190 to -110°C -110 to +0°C +0 to +1300°C	0.20°C 0.1°C 0.05°C 0.05°C	0.4°C 0.10°C 0.08°C 0.010% RDG + 0.15°C	-240 to -190°C -190 to -110°C -110 to +0°C +0 to +1300°C	0.20°C 0.1°C 0.05°C 0.05°C	0.25°C 0.13°C 0.08°C 0.010% L + 0.06°C
Platine	-100 to +1400°C	0.05°C	0.25°C	-100 to +1400°C	0.05°C	0.25°C
Мо	+0 to +1375°C	0.05°C	0.010% RDG + 0.06°C	+0 to +1375°C	0.05°C	0.010% L + 0.06°C
NiMo/NiCo	-50 to +1410°C	0.05°C	0.010% RDG + 0.30°C	-50 to +1410°C	0.05°C	0.010% L + 0.3°C

Accuracy is given for reference @ 0°C.

When using the internal reference junction (except couple B) add an additional uncertainty of 0.2 °C at 0 °C.

It is possible (thermocouple B excepted) to choose by programming the cold junction localization: External at 0°C, internal (temperature compensation of instrument's terminals) or manually entered.

Temperature coefficient: <10% of accuracy /°C

Display unit: °C and F

Thermocouples: D and G, for specifications, refer to instruction manual

Specifications and performances in pressure @23°C ±5°C>

Pressure: Measurement by external digital sensor

Ranges	0-1 bar	0-3 bar	0-10 bar	0-30 bar	0-100 bar	0-300 bar	0-1000 bar
Absolute	Х	Х	Х	Х	Х	Х	Х
Relative	Х	Х	Х	Х			

Available in relative, absolute and differential pressure. Connector: ¼ gas Resolution: 0.02% FS Accuracy: - 0.05% FS from 10 to 40°C - 0.1% FS from -10 to +10°C and from 40 to 80°C

This digital pressure module ACL433 is connected to CALYS 100 through RS485 serial cable to the digital input connector. All data are digital. Measurements are compensated in temperature by a polynomial correction implemented into the firmware at factory.

Specifications and performances in process @23°C ±5°C

DC current: Measurement

With or without loop supply

Range	Resolution	Accuracy / 1 year	Nota Rin
0-20 mA	1 μΑ	0.012% RDG + 2 μA	< 25 Ω
4-20 mA	1 μΑ	0.012% RDG + 2 μA	< 25 Ω
±50 mA	1 μΑ	0.012% RDG + 2 μA	< 25 Ω

Temperature coefficient: < 10 ppm/°C beyond reference domain Loop supply: 24 V \pm 10% HART® compatibility: Input impedance Rin = 280 Ω

Display with linear or quadratic scaling

DC current: Emission

With or without loop supply

Range	Resolution	Accuracy / 1 year
24 mA	1 μΑ	0.012% RDG + 2 μA
4-20 mA	1 μΑ	0.012% RDG + 2 μA
0-20 mA	1 μΑ	0.012% RDG + 2 μA
Temperature Coefficient < 10 p Settling time: < 5 ms Specifications given for CALYS c	-	

- Active mode (+24V ON) 1 Meter in passive mode (+24 V OFF)

- Passi	ive mode	(+24 V C)FF) 1 Me	eter in ac	tive mode ((+24 V ON)	
Pre-pr	ogramme	d steps					
0%	25%	50%	75%	100%			

0%	Z3%	50%	15%	100%			
4-20 m	nA linear		4	8	12	16	20
0-20 m	nA linear		0	5	10	15	20

4-20 mA quad	4	5	8	13	20
0-20 mA quad	0	1.25	5	11,25	20
4-20 mA valves	3.8-4-4.2		12	19,	20, 21

DC voltage: Measurement

Range	Resolution	Accuracy / 1 year	Nota Rin
+100 mV	1 μV	0.010% RDG + 3 μ V	> 10 MΩ
+1 V (1)	10 µV	0.010% RDG + 20 μV	> 10 MΩ
+10 V	100 µV	0.010% RDG + 200 μ V	= 1 ΜΩ
+50 V	1 mV	0.010% RDG + 2 mV	= 1 ΜΩ

(1) Range specified: -0.8 V to +1 V

Temperature coefficient: < 7 ppm/°C beyond reference domain

DC voltage: Emission

Range	Resolution	Accuracy / 1 year	Minimum load
+100 m V	1 μV	0.010% RDG + 3 μ V	1 kΩ
+2 V	10 µV	0.010% RDG + 20 μ V	2 kΩ
+20 V	100 μV	0.012% RDG + 200 μV (1)	4 kΩ
+50 V	1 mV	0.012% RDG + 2 mV	4 kΩ

(1) Noise: 3 ppm (for 0.1 Hz to 10 Hz) and 5 ppm (for 10 Hz to 100 Hz) Temperature coefficient: < 7 ppm/°C beyond reference domain Settling time: < 5 ms

Frequency and counting: Measurement

Range	Resolution	Accuracy / 1 year	
20 kHz	0.01 Hz	0.005% RDG	

Scale unit: Pulse / min and Hz Trigger level: 1 V Measurement on frequency signals or dry contacts Counting will be performed on defined time or infinite time. Temperature coefficient: < 5 ppm/°C beyond reference domain

Frequency and counting: Emission

Range	Resolution	Accuracy / 1 year	
1000 Hz	0.01 Hz	0.005% RDG	
100 kHz	0.1 Hz	0.005% RDG	

Scale unit: Pulse / min and Hz Emission of pulses and dry contacts

Signal maximum amplitude: 20 V (user selectable) Temperature coefficient: < 5 ppm/°C beyond reference domain

Resistance: Measurement

Range	Resolution	Accuracy / 1 year	
400 Ω	1 mΩ	0.010% RDG + 10 mΩ	
4000 Ω	10 mΩ	0.010% RDG + 100 mΩ	

Resistance measurement in 2, 3 or 4 wires: automatic recognition of number of connected wires, with indication on screen

Accuracies are given for 4-wire mounted probes

Open circuit terminal voltage: < 10 V

Continuity test: Open circuit for R > 1000 Ω and closed circuit for R < 1000 Ω

Temperature coefficient: < 7 ppm/°C beyond reference domain

Measurement current: 0.25 mA

Resistance: Emission

Range	Resolution	Accuracy / 1 year	Nota lext
40 Ω	1 mΩ	0.012% RDG + 3 mΩ 0.012% RDG + 10 mΩ	lext: 10 mA lext: 1 mA
400 Ω	10 mΩ	0.012% RDG + 20 mΩ 0.012% RDG + 30 mΩ	lext: 1 / 10 mA lext: 0.1 / 1 mA
4000 Ω	100 mΩ	0.012% RDG + 300 mΩ	lext: 0.1 / 1 mA

Temperature coefficient: < 7 ppm/°C beyond reference domain Current settling time: < 1 ms lext : Current received by the calibrator

Further features

Scaling in measurement and simulation modes

Scaling allows process signals to be displayed in % of FS or in all other units. This function also allows sensors to be corrected after a calibration.

Relative measurement

Models and accessories

Instrument:

CALYS100 On-site documenting multifunction calibrator

Delivered in standard with:

- User manual
- Battery charger
- Set of 6 testing leads
- Carrying strap
- Factory test report

Accessories:

ACL433 External digital pressure sensor for CALYS 75 / 100 / 150 (Absolute or relative pressure)

Different ranges available from 0 to 1,000 bar

Range from -1 -> 1; 3; 10; 30 (Absolute or relative pressure)

Range from -1 -> 100; 300; 1,000 (Absolute pressure only))

Standard accuracy: 0.05% FS

AN6050 Transport case for CALYS series

ACL9311 Set of 6 measuring cables with removable crocodile clips

ER 49504-000 USB cable

Software:

DATACAL Calibration software for CALYS 75 / 100 / 150

Supplied with USB cable

Certification:

QMA11EN COFRAC certificate of calibration

With all relevant data points where the device has been tested

Packing information:

Size 210 x 110 x 50 mm

Weight 900 g